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Overview

® Undirected graphical models
® Definition and parametric description
® Markov properties and implicit description
® Discrete and Gaussian

® Directed graphical models

® Definition and parametric description

® Markov properties, d-separation, and implicit description
® Discrete and Gaussian

® model equivalence

® Mixed graphical models

)
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Undirected graphical models
Let G = (V, E) be an undirected graph and C(G) the set of maximal cliques of G.

Let (Xy: v € V)€ X :=]],cy Av be a random vector.

Notation: X4 = HveA X, Xa=(Xv:vEA), xa=(x:vEA).
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Undirected graphical models
Let G = (V, E) be an undirected graph and C(G) the set of maximal cliques of G.

Let (Xy: v € V)€ X :=]],cy Av be a random vector.
Notation: X4 = HveA X, Xa=(Xv:vEA), xa=(x:vEA).

For each C € C(G) let
¢C : XC — RZO

be a continuous function called a clique potential.

The undirected graphical model (or markov random field) corresponding to G and X
is the set of all probability density functions on X of the form

p(x)=5 [ ¢clxc)

cec(G)

where

/X [[ ¢cxc)du(x)

cec(6)

is the normalizing constant.
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Undirected graphical models

Example

Example

1
p(x1,x2,x3,X4) = E¢>12(X1, x2)¢13(x1, X3)P1a(x1, Xa).

1
p(x1, X2, X3, X4, X5) = §<¢>123(X17 X2, X3)$25 (X2, X5 ) P34 (X3, X4 ) a5 (Xa, X5 ).



Discrete undirected graphical models
Suppose that X, =[], rn € N. Then, X € X =[] c\/[r]. We use parameters

05, = bc(xc), CE€C(G),x € [n].

Then, we get the rational parametrization

am H

Cec(G

px =

The graphical model corresponding to G consists of all discrete distributions
p = (px : x € X) that factor in this way.

Example

G Let n = r» = r3 = r, = 2. The parametrization has the form

1 02),03) paa)

Pxixox3xqg = Z(G) x1x2 Vx1x3Ux1 x4

g e ° The ideal I is the ideal of the image of this parametrization.



Discrete undirected graphical models
Example
G Let n = r» = r3 = r, = 2. The parametrization has the form

1 13
Pxyxoxgxg = Z(0) 0>(<1X29>(<1X;0>(<1Xz)1

e ° Q The ideal I is the ideal of the image of this parametrization.

S = QQla-(1,1)..a.(2,2), b(1,1)..b-(2,2), c(1,1)..c(2,2)]
R = QQlp-(1,1,1,1)..p-(2,2,2,2)]

L =

for i from 0 to 15 do (

s = last baseName (vars R)_.(0,i);

L = append(L, a-(s.0,s-1)*b_(s.0,s.2)*c_(s.0,s.3))

)

phi = map(S, R, L)

I = ker phi

Output:

Ig = (2-minors of M) + (2-minors of M) + (2-minors of M3) + (2-minors of M)

where
My = (Poooo Po0OL  P0010 Poon) My = (Pmoo Pl001  P1010 Pmn)
L= My =

Po100 Po101 Po110 Po111 P1100 p1101 P1110 P1111

Mz = Po000 Pooo1 Po100 Po101 M,
P1010 P1011 p1110 P1111

= P1000 P1001 P1100 P1101 .
Po010 Poo11 Po110 Po111

29



Gaussian undirected graphical models

X =(Xv:v € V)~N(uX) Gaussian random vector, K = £~1. The density of X is
1 1
) = F e (=50~ K 1)

When does it factorize according to G = (V, E), i.e. p(x) = %HCec(G) dc(xc)?
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Gaussian undirected graphical models
X =(Xv:v € V)~N(uX) Gaussian random vector, K = £~1. The density of X is

) = F e (=50~ K 1)

When does it factorize according to G = (V, E), i.e. p(x) = %HCec(G) dc(xc)?

) = 5 T exw (~5 00 = m2Ke ) TT o (=500 =)o = i)

vev v#u
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Gaussian undirected graphical models

X =(Xv:v € V)~N(uX) Gaussian random vector, K = £~1. The density of X is
1 1
) = F e (=50~ K 1)

When does it factorize according to G = (V, E), i.e. p(x) = %HCec(G) dc(xc)?

p) = 5 []ew (-5 ) [Tes (~5 00 = o = )k )
ve vH#u

The density factorizes according to G = (V/, E) if and only if

Kuv = 0 for all (u,v) € E.
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Gaussian undirected graphical models

X =(Xv:v € V)~N(uX) Gaussian random vector, K = £~1. The density of X is
1 1
) = F e (=50~ K 1)

When does it factorize according to G = (V, E), i.e. p(x) = %HCec(G) dc(xc)?

) = 5 T exw (~5 00 = m2Ke ) TT o (=500 =)o = i)

vev v#u
The density factorizes according to G = (V/, E) if and only if
Kuv = 0 for all (u,v) € E.

The parametric description of the Gaussian graphical model with respect to
G=(V,E)is

Meg={E=K1:K>0and Ky, =0 for all (u,v) & E}.

The ideal of the model I is the ideal of the image of this parametrization.
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Markov properties and conditional independence for
undirected graphical models

A different way to define undirected graphical models is via conditional independence
statements.
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Markov properties and conditional independence for
undirected graphical models

A different way to define undirected graphical models is via conditional independence
statements.

Let G = (V,E).
For A, B, C C V, say that A and B are separated by C if every path between a € A
and b € B goes through a vertex in C.

The global Markov property associated to G consists of all conditional independence
statements Xy L Xg|X¢ for all disjoint sets A, B, C such that C separates A and B.

Example

29



Markov properties and conditional independence for
undirected graphical models

A different way to define undirected graphical models is via conditional independence
statements.

Let G = (V,E).
For A, B, C C V, say that A and B are separated by C if every path between a € A
and b € B goes through a vertex in C.

The global Markov property associated to G consists of all conditional independence
statements Xy L Xg|X¢ for all disjoint sets A, B, C such that C separates A and B.

Example
‘ Global Markov property:

Xy 1 Xs| X,
Xo 1 Xa| Xy

Q ° ° X5 1L Xa| X



Conditional independence for discrete distributions

For discrete random variables conditional independence yields polynomial equations in
(px : x € X).

How?
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Conditional independence for discrete distributions

For discrete random variables conditional independence yields polynomial equations in
(px : x € X).
How?

Example
If V={1,2} and X = [m1] x [m2], then X1 1L X; is the same as

pij = pitp4j forall i€ [m],j € [my].
Equivalently, the matrix pLy
P=(pg)=| 1 |(pr1 - pPrm),

Pmy+

has rank 1. So, equivalently its 2 x 2 minors vanish, i.e. pjjpxe — piepij = 0 for all
i: k € [mllvjvg € [m2]

29



Conditional independence for discrete distributions

Proposition
Let X be a discrete random vector with sample space X = []7_,[m;]. Then for
disjoint sets A, B, C C [n], we have that Xa 1L Xg|Xc if and only if

Pipigic+Piaigic+ — Piaigic+Piaigic+ =0  for all ix # ja € Xa, i # jg € X5, ic € Xc.

10/29



Conditional independence for discrete distributions

Recall: the global Markov property w.r.t. G consists of all conditional independence
statements X L Xg|X¢ for all disjoint A, B, C s.t. C separates A and B.

The global Markov properteis define an ideal lgopai(6) € Rl[px : x € X].

11/29



Conditional independence for discrete distributions

Recall: the global Markov property w.r.t. G consists of all conditional independence
statements X L Xg|X¢ for all disjoint A, B, C s.t. C separates A and B.

The global Markov properteis define an ideal lgopai(6) € Rl[px : x € X].

Let X1, X2, X3, Xa € {1,2}. Global Markov property:

Example
Xo 1L X3, X Xy

Xz 1L X2, Xa| X1
@ g @ Xa AL Xy, X3| Xy

Ideal associated to the global Markov property is

lgtobal(6) = (2-minors of My)+(2-minors of Mp)+(2-minors of Ms)+(2-minors of Ma) = Ig

My = Po000 Poo01 Poo10 Poo11 My = P1000 P1001 P1010 P1011
P0100 Po101 Po110 poi11 )’ P1100 p1101 P1110 P1111

where

M3 = Po000 Pooo1 Po100 Po101 My = P1000 P1001 P1100 P1101 .
Poo10 Poo11 Po110 po111 )’ P1010 P1011 p1110 P1111

11/29



Conditional independence for Gaussian distributions

For Gaussian random variables X = (X, : v € V) ~ N(y, X), conditional
independence statements yield polynomial equations in the entries of X!
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Conditional independence for Gaussian distributions

For Gaussian random variables X = (X, : v € V) ~ N(y, X), conditional
independence statements yield polynomial equations in the entries of X!

® Independence in a Gaussian distribution X ~ A(u, X) is equivalent to entries of
Y vanishing:
Xa L Xp <—= Zayb =0.

® Conditional independence in a Gaussian distribution X ~ N'(u, ¥) is equivalent
to a rank condition:

Xall Xg|Xc <= rank(Zauc,Buc) < ICl.

Proof.

Exercise. O

12/29



Markov properties for undirected Gaussian graphical
models
Proposition

The set of of Gaussian covariance matrices compatible with the global Markov
properties for G is precisely

Mg ={X > 0: rank(Xauc,suc) <|C| for all A,B,C C V s.t. C separates A and B}.

The ideal lgopa1(6) € R[X] corresponding to the global Markov property for G is

/

global(G) = ((|C| + 1)-minors of Tauc,uc : A, B,C C V s.it. C separates A and B).

13/29



Markov properties for undirected Gaussian graphical

models

Proposition
The set of of Gaussian covariance matrices compatible with the global Markov
properties for G is precisely

Mg ={X > 0: rank(Xauc,suc) <|C| for all A,B,C C V s.t. C separates A and B}.

The ideal lgopa1(6) € R[X] corresponding to the global Markov property for G is

/

global(G) = ((|C| + 1)-minors of Tauc,uc : A, B,C C V s.it. C separates A and B).

Example
) The global Markov property
0 Global Markov property: yields the ideal
Xo AL X3, Xa| X1 |
Xo 1L Xa. X, |X global(G)
Q e XZLXS’ X4|X1 = (det X172 13,det X172 14, det T 13,14,
e ST I det X12 34, det X13 24, det 14 23).

13/29



Equivalence of parametric and implicit descriptions

Theorem (Hammersley-Clifford)

A continuous positive distribution P on X factorizes according to G if and only if it
satisfies the global Markov property for the graph G.

® For discrete distributions:

V(Ic) N Agxi—1),+ = V(lgiobai(6)) N (x| —1),+-
® For Gaussian distributions

V(lg) N{XZ > 0} = V(lgiobai()) N {Z = 0}

14 /29



Directed acyclic graphical models

Let G = (V, E) be a directed acyclic graph (or DAG). For each node v € V, let pa(v)
be the parents of v. Let X € Hvev X\, be our random variable.

The distribution p(x) factors according to the graph G if

p(x) = H p(XV‘Xpa(v))

veVv

forall x € X.

Example
The distribution p(x) factors according to this graph if

(9
e ' p(x) = p(x1)p(x2)p(x3]x1, x2) P(xa|x2, X3) P(x5 |x4)
OO,

for all x € X.

The directed acyclic graphical model (or Bayesian network) corresponding to a DAG G
and a state space X is the set of all densities that factorize in according to G.

15/29



Discrete directed graphical models

The factorization gives a parametric description of discrete graphical models.
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Discrete directed graphical models

The factorization gives a parametric description of discrete graphical models.

Example
Assume that variables are binary: Xi, Xo, X3 € {1,2}. We have
3
Prtsas = P(x1)P(2)P(xslxa, x0) = 04000608
Note that
(1) 1 _ ( ) (2) _ 93 (3)
61 + 02 + 0 91\)(1 Xxo + 92|)<1,x2
for all values xq,x2 € {1,2}. Using Macaulay2, we can compute the
vanishing ideal /g for this model:
S = QQ[a,b,c11,c12,c21,c22];
R = QQlp1i1,p112,p121,p122,p211,p212,p221,p222];
f = map(S,R, { a*bxcll, a*b*(1-c1l), a*(1-b)*c12, a*(1-b)*(1-c12),

(1-a)*b*c21, (1-a)*b*(1-c21), (1-a)*(1-b)*c22, (1—a)*(1-b)*(1-c22)});
I = kernel f
The output is:

lc = {p11+P22+ — p12+P21+) = hu o

16
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Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model!
How?

17/29



Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model!
How?

Theorem
Let X ~ N (u,X) be a Gaussian random vector. The density of X factors according to
the DAG G if and only if we can write

= > NiXj+e,

Jj€pa(i)

where € = (e1,...,€n) ~ N (v, Q = diag(wi,...,wn)), i.e. the ¢; are independent of
each other.

Proof.

Exercise. O
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Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model!
How?

Theorem
Let X ~ N (u,X) be a Gaussian random vector. The density of X factors according to
the DAG G if and only if we can write

= > NiXj+e,

Jj€pa(i)

where € = (e1,...,€n) ~ N (v, Q = diag(wi,...,wn)), i.e. the ¢; are independent of
each other.

Proof.

Exercise. O

Equivalently,
Aij ifi—=jeE

X =ATX here Aj; =
te where Ay {0 otherwise.

17 /29



Gaussian directed graphical models

Note that
X=A"X+e = X=(U-N"Te

Therefore, the covariance matrix of X is

T=0U-N"TQU-N"1

18 /29



Gaussian directed graphical models

Note that
X=A"X+e = X=(U-N"Te

Therefore, the covariance matrix of X is

r=0U-N"TQU-N"L.

Corollary
The Gaussian graphical model associated to the DAG G = (V,E) is

Me={Z=(U—-=N"TQU—-N"1: AcRE and Q - 0 is diagonal}.

18 /29



Gaussian directed graphical models

Note that
X=A"X+e = X=(U-N"Te

Therefore, the covariance matrix of X is

r=0U-N"TQU-N"L.

Corollary
The Gaussian graphical model associated to the DAG G = (V,E) is

Me={Z=(U—-=N"TQU—-N"1: AcRE and Q - 0 is diagonal}.

Definition
The Gaussian vanishing ideal for a given DAG G is the ideal I C R[X] of the image of
this parametrization.

18 /29



Gaussian directed graphical models

Example
0 Ap Az 0 (1) >\112 )\53 >\12>\24>\+>\13>\34
A=[o o 0o x|, (1-MNT'= 2
0 0 0 Aaa 0 0 1 A34
0 0 0 1
w1
o m-T w2 a1
Y =(—A) " (I —A)
wy
w1 w112 w113 wW1A12A24 + W1A13A34

widiz w2 +widd, widipAiz wadas + wiAi Ao + wiApA13Aas

The ideal of the parametrization is Ig = <|212’13‘, |21237234|> = I2JL3\1, 111.42,3-

19/29



Markov properties for directed acyclic graphical models

Let G = (V, E) be a DAG.

The directed global Markov property associated to G consists of all conditional
independence statements X4 1L Xg|X¢ for all disjoint sets A, B, C such that C
d-separates A and B.

20/29



d-separation

An undirected path in a DAG G is a sequence of nodes wup, .

Uj <= Ujy1 Or Uj — Ujy1 for all 7 > 0.

.., ug such that either

The vertex u; is a collider in an undirected path if uj_; — u;j < uj;1.

Definition

Two nodes u,v € V in a DAG G are d-separated given C C V \ {u, v} if for every

undirected path 7 between u and v
® either 3 a non-collider in C

® or 3 a collider not in C Uan(C).

Example

d-separation:

(20 Lo

1144023

ORI

14425

Global Markov properties:

X1 1L Xo
Xy 1 Xq| X2, X3
X1 1L Xs|Xs

21/29



Markov properties for DAG models

Example

G a d-separation: Global Markov properties:

21431 Xo 1L X3| X4
e e 114423 X1 AL X4 X2, X3

® Discrete: let X1, X2, X3, X4 € {1,2}. Then

/

global(G) =(P111+P122+ — P112+P121+, P211+P222+ — P12+ P221+,

P1111P2112 — P1112P2111, P1121P2122 — P1122P2121,

P1211P2212 — P1212P2211, P1221P2222 — P1222P2221)-

® Gaussian:

/

global(G) = (det 12,13, det X123 234) = Ig.

22/29



Hammersley-Clifford Theorem for directed acyclic graphical
models

Theorem
A probability density factorizes according to a DAG G if and only if it satisfies the
global Markov property with respect to G.

23/29



Hammersley-Clifford Theorem for directed acyclic graphical
models

Theorem
A probability density factorizes according to a DAG G if and only if it satisfies the
global Markov property with respect to G.

For Gaussian directed acyclic graphical models:
Mg = {Z - 0} N V(IG) = {Z - 0} N V(’global(G))'

Note that
lgiobal(c) C G

but equality doesn’t always hold.

23 /29



Gaussian directed graphical models in Macaulay?2

Example

There is a Macaulay2 package called " GraphicalModels”
specifically designed for working with parametrizations and
conditional independence ideals in graphical models.

OO,
@9‘9

loadPackage "GraphicalModels"

= digraph{{1,{3}},{2,{3}}.,{3,{4}}.,{5.{3.4}}}

= gaussianRing G

= conditionalIndependenceldeal (R,globalMarkov(G))
gaussianVanishingIdeal (R)

=7

H G H X Q
I

Output:  false
Reason: [X12,34] € Ig but [X12,34] & lgiobai(c)-

24 /29



Gaussian directed graphical models in Macaulay?2

Example

There is a Macaulay2 package called " GraphicalModels”
specifically designed for working with parametrizations and
conditional independence ideals in graphical models.

OO,
@9‘9

loadPackage "GraphicalModels"

= digraph{{1,{3}},{2,{3}}.,{3,{4}}.,{5.{3.4}}}

= gaussianRing G

= conditionalIndependenceldeal (R,globalMarkov(G))
gaussianVanishingIdeal (R)

=7

H G H X Q
I

Output:  false
Reason: [X12,34] € Ig but [X12,34] & lgiobai(c)-

Theorem
For a Gaussian DAG model the following relationship holds between I and lgopaG):

oo

I6 = lgobaric) : | [ ] det(Taa)
ACV

24 /29



Markov equivalence for directed acyclic graphical models
Undirected graphical models:
® unique set of global Markov statements,
® unique family of probability distributions.

Not true for directed graphical models!
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Markov equivalence for directed acyclic graphical models

Undirected graphical models:
® unique set of global Markov statements,
® unique family of probability distributions.

Not true for directed graphical models!

Example
. \/7) g
G (1 ' 2/ 3 All three of these DAGS have the global Markov
roperty consisting of one statement:
Gy € )‘7,\2 __/3 \ property g
= X1AL X3]Xo.
G (1= (2) +3) e

25
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Markov equivalence for directed acyclic graphical models

Undirected graphical models:
® unique set of global Markov statements,
® unique family of probability distributions.

Not true for directed graphical models!

Example
. \/7\, o
Gu: 1/ ' 2 ‘ 3 ’ All three of these DAGS have the global Markov
roperty consisting of one statement:
G (1){(2~3) property consisting

R / S X1AL X3]Xo.
Gs: \1)‘ \g> “3)

Definition
Two DAGs are Markov equivalent if they yield the same set of global Markov
statements, i.e. they have the same d-separation.

Theorem
Two DAGS G; and G, are Markov equivalent if and only if

1. Gj and Gy have the same underlying undirected graph,

2. G and Gy have the same unshielded colliders, i.e. triples of vertices u, v, w
which induce the subgraph u — v < w.

25
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Linear Structural Equation Models

OO O
© 9‘9 OO0
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Linear Structural Equation Models

0 a 0
ol (e
Definition

A mixed graph is a triple G = (V, D, B) where
® D is the set of directed edges i — j, and
® B is the set of bidirected edges i <+ j.
Gaussian random vectors X = (X, : v € V),e = (ev : v € V) such that
X=A"X+e¢,
where A € RP, and Var(e) = Q, where Q,, = 0 for (u,v) € B.
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Linear Structural Equation Models

Definition
A mixed graph is a triple G = (V, D, B) where
® D is the set of directed edges i — j, and
® B is the set of bidirected edges i <+ j.
Gaussian random vectors X = (X, : v € V),e = (ev : v € V) such that
X=A"X+e¢,
where A € RP, and Var(e) = Q, where Q,, = 0 for (u,v) € B.

Example
0 0 A3 0 w11
10 0 A 0 _ W)
A 0 0 0 Az’ 2= w3z w3
0 O 0 0 w34 w4

26 /29



Linear Structural Equation Models

X=AN"X+e — X=(-N"Te
Thus, if £ = Var(X), then

Y=0U-N"TQU-N"1.
Definition
The linear structural equation model associated to a mixed graph G = (V, D, B) is
Mg ={(-N"TQU-N"1:AeRP Qe PD(B)}.
The parametrization map of this model is

é6 : RP x PD(B) — PDy,, (AQ)— (I —AN"TQU —N)L.

What is the ideal of the image of ¢c? A complete characterization of generators
isn't known, Markov properties aren’t enough.

27/29



Linear Structural Equation Models

Example

° g = (|X12,45])-

Not a conditional independence ideal!

e e.e Corresponds to trek separation.

28 /29



Linear Structural Equation Models

Example

g = (|X12,45])-

Not a conditional independence ideal!

e e.e Corresponds to trek separation.

Example (Verma Graph)

CQEmORC

le = (0'110'130'220'34 — 011013023024

2 2
—011014022033 + 01101403 — 015013034

2 2
+01,014033 + 012013024 — 012013014023).

Not determinantal. It turns out that

Ie = [X103,123]  [X123,124]
Y13 Y14

).

28 /29



Linear Structural Equation Models

Open problems:

Parameter identifiability: is ¢ (generically) injective?

What is the dimension of the model Mg?

Covariance equivalence: what are the equivalence classes of mixed graphs?
What are the generators of /g7

Maximum likelihood estimation: when does the MLE exist, what is the
ML-degree?

[1] S. Sullivant. Algebraic Statistics (2018)
[2] M. Drton. Algebraic Problems in Linear Structural Equation Modeling (2016)
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Linear Structural Equation Models

Open problems:

Parameter identifiability: is ¢ (generically) injective?

What is the dimension of the model Mg?

Covariance equivalence: what are the equivalence classes of mixed graphs?
What are the generators of /g7

Maximum likelihood estimation: when does the MLE exist, what is the
ML-degree?

[1] S. Sullivant. Algebraic Statistics (2018)
[2] M. Drton. Algebraic Problems in Linear Structural Equation Modeling (2016)

Thank you!
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