Graphical models from an algebraic perspective

Elina Robeva
MIT

ICERM Nonlinear Algebra Bootcamp

September 11, 2018

Overview

- Undirected graphical models
- Definition and parametric description
- Markov properties and implicit description
- Discrete and Gaussian
- Directed graphical models
- Definition and parametric description
- Markov properties, d-separation, and implicit description
- Discrete and Gaussian
- model equivalence
- Mixed graphical models

Undirected graphical models

Let $G=(V, E)$ be an undirected graph and $\mathcal{C}(G)$ the set of maximal cliques of G.
Let $\left(X_{v}: v \in V\right) \in \mathcal{X}:=\prod_{v \in V} \mathcal{X}_{v}$ be a random vector.
Notation: $\mathcal{X}_{A}=\prod_{v \in A} \mathcal{X}_{v}, X_{A}=\left(X_{v}: v \in A\right), x_{A}=\left(x_{v}: v \in A\right)$.

Undirected graphical models

Let $G=(V, E)$ be an undirected graph and $\mathcal{C}(G)$ the set of maximal cliques of G.
Let $\left(X_{v}: v \in V\right) \in \mathcal{X}:=\prod_{v \in V} \mathcal{X}_{v}$ be a random vector.
Notation: $\mathcal{X}_{A}=\prod_{v \in A} \mathcal{X}_{v}, X_{A}=\left(X_{v}: v \in A\right), x_{A}=\left(x_{v}: v \in A\right)$.
For each $C \in \mathcal{C}(G)$ let

$$
\phi_{C}: \mathcal{X}_{C} \rightarrow \mathbb{R}_{\geq 0}
$$

be a continuous function called a clique potential.

The undirected graphical model (or markov random field) corresponding to G and \mathcal{X} is the set of all probability density functions on \mathcal{X} of the form

$$
p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right)
$$

where

$$
Z=\int_{\mathcal{X}} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right) d \mu(x)
$$

is the normalizing constant.

Undirected graphical models

Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{Z} \phi_{12}\left(x_{1}, x_{2}\right) \phi_{13}\left(x_{1}, x_{3}\right) \phi_{14}\left(x_{1}, x_{4}\right) .
$$

Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{Z} \phi_{123}\left(x_{1}, x_{2}, x_{3}\right) \phi_{25}\left(x_{2}, x_{5}\right) \phi_{34}\left(x_{3}, x_{4}\right) \phi_{45}\left(x_{4}, x_{5}\right) .
$$

Discrete undirected graphical models

Suppose that $\mathcal{X}_{v}=\left[r_{v}\right], r_{v} \in \mathbb{N}$. Then, $X \in \mathcal{X}=\prod_{v \in V}\left[r_{v}\right]$. We use parameters

$$
\theta_{x_{C}}^{C}:=\phi_{C}\left(x_{C}\right), \quad C \in \mathcal{C}(G), x_{r} \in\left[r_{v}\right] .
$$

Then, we get the rational parametrization

$$
p_{x}=\frac{1}{Z(\theta)} \prod_{C \in \mathcal{C}(G)} \theta_{x_{C}}^{C}
$$

The graphical model corresponding to G consists of all discrete distributions $p=\left(p_{x}: x \in \mathcal{X}\right)$ that factor in this way.
Example

Let $r_{1}=r_{2}=r_{3}=r_{4}=2$. The parametrization has the form

$$
p_{x_{1} x_{2} x_{3} x_{4}}=\frac{1}{Z(\theta)} \theta_{x_{1} x_{2}}^{(12)} \theta_{x_{1} \times_{3}}^{(13)} \theta_{x_{1} x_{4}}^{(14)} .
$$

The ideal I_{G} is the ideal of the image of this parametrization.

Discrete undirected graphical models
 Example

Let $r_{1}=r_{2}=r_{3}=r_{4}=2$. The parametrization has the form

$$
p_{x_{1} x_{2} x_{3} x_{4}}=\frac{1}{Z(\theta)} \theta_{x_{1} x_{2}}^{(12)} \theta_{x_{1} x_{3}}^{(13)} \theta_{x_{1} x_{4}}^{(14)} .
$$

The ideal I_{G} is the ideal of the image of this parametrization.

```
S = QQ[a_(1,1)..a_(2,2), b_(1,1)..b_( 2,2), c_(1,1)..c_(2,2)]
R = QQ[p_(1,1,1,1) ..p_( (2, 2, 2, 2)]
L = {}
for i from 0 to 15 do (
s = last baseName (vars R)_(0,i);
L = append(L, a_(s_0,s_1)*b_(s_0,s_2)*c_(s_0,s_3))
)
phi = map(S, R, L)
I = ker phi
```


Output:

$$
I_{G}=\left\langle 2 \text {-minors of } M_{1}\right\rangle+\left\langle 2 \text {-minors of } M_{2}\right\rangle+\left\langle 2 \text {-minors of } M_{3}\right\rangle+\left\langle 2 \text {-minors of } M_{4}\right\rangle
$$

where

$$
\begin{aligned}
M_{1} & =\left(\begin{array}{llll}
p_{0000} & p_{0001} & p_{0010} & p_{0011} \\
p_{0100} & p_{0101} & p_{0110} & p_{0111}
\end{array}\right), M_{2}=\left(\begin{array}{llll}
p_{1000} & p_{1001} & p_{1010} & p_{1011} \\
p_{1100} & p_{1101} & p_{1110} & p_{1111}
\end{array}\right) \\
M_{3} & =\left(\begin{array}{llll}
p_{0000} & p_{0001} & p_{0100} & p_{0101} \\
p_{0010} & p_{0011} & p_{0110} & p_{0111}
\end{array}\right), M_{4}=\left(\begin{array}{llll}
p_{1000} & p_{1001} & p_{1100} & p_{1101} \\
p_{1010} & p_{1011} & p_{1110} & p_{1111}
\end{array}\right) .
\end{aligned}
$$

Gaussian undirected graphical models

$X=\left(X_{v}: v \in V\right) \sim \mathcal{N}(\mu, \Sigma)$ Gaussian random vector, $K=\Sigma^{-1}$. The density of X is

$$
p(x)=\frac{1}{Z} \exp \left(-\frac{1}{2}(x-\mu)^{T} K(x-\mu)\right)
$$

When does it factorize according to $G=(V, E)$, i.e. $p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right)$?

Gaussian undirected graphical models

$X=\left(X_{v}: v \in V\right) \sim \mathcal{N}(\mu, \Sigma)$ Gaussian random vector, $K=\Sigma^{-1}$. The density of X is

$$
p(x)=\frac{1}{Z} \exp \left(-\frac{1}{2}(x-\mu)^{T} K(x-\mu)\right)
$$

When does it factorize according to $G=(V, E)$, i.e. $p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right)$?

$$
p(x)=\frac{1}{Z} \prod_{v \in V} \exp \left(-\frac{1}{2}\left(x_{v}-\mu_{v}\right)^{2} K_{v v}\right) \prod_{v \neq u} \exp \left(-\frac{1}{2}\left(x_{v}-\mu_{v}\right)\left(x_{u}-\mu_{u}\right) K_{v u}\right) .
$$

Gaussian undirected graphical models

$X=\left(X_{v}: v \in V\right) \sim \mathcal{N}(\mu, \Sigma)$ Gaussian random vector, $K=\Sigma^{-1}$. The density of X is

$$
p(x)=\frac{1}{Z} \exp \left(-\frac{1}{2}(x-\mu)^{T} K(x-\mu)\right)
$$

When does it factorize according to $G=(V, E)$, i.e. $p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right)$?

$$
p(x)=\frac{1}{Z} \prod_{v \in V} \exp \left(-\frac{1}{2}\left(x_{v}-\mu_{v}\right)^{2} K_{v v}\right) \prod_{v \neq u} \exp \left(-\frac{1}{2}\left(x_{v}-\mu_{v}\right)\left(x_{u}-\mu_{u}\right) K_{v u}\right) .
$$

The density factorizes according to $G=(V, E)$ if and only if

$$
K_{u v}=0 \text { for all }(u, v) \notin E .
$$

Gaussian undirected graphical models

$X=\left(X_{v}: v \in V\right) \sim \mathcal{N}(\mu, \Sigma)$ Gaussian random vector, $K=\Sigma^{-1}$. The density of X is

$$
p(x)=\frac{1}{Z} \exp \left(-\frac{1}{2}(x-\mu)^{T} K(x-\mu)\right)
$$

When does it factorize according to $G=(V, E)$, i.e. $p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right)$?

$$
p(x)=\frac{1}{Z} \prod_{v \in V} \exp \left(-\frac{1}{2}\left(x_{v}-\mu_{v}\right)^{2} K_{v v}\right) \prod_{v \neq u} \exp \left(-\frac{1}{2}\left(x_{v}-\mu_{v}\right)\left(x_{u}-\mu_{u}\right) K_{v u}\right) .
$$

The density factorizes according to $G=(V, E)$ if and only if

$$
K_{u v}=0 \text { for all }(u, v) \notin E .
$$

The parametric description of the Gaussian graphical model with respect to $G=(V, E)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma=K^{-1}: K \succ 0 \text { and } K_{u v}=0 \text { for all }(u, v) \notin E\right\} .
$$

The ideal of the model I_{G} is the ideal of the image of this parametrization.

Markov properties and conditional independence for undirected graphical models

A different way to define undirected graphical models is via conditional independence statements.

Markov properties and conditional independence for undirected graphical models

A different way to define undirected graphical models is via conditional independence statements.

Let $G=(V, E)$.
For $A, B, C \subseteq V$, say that A and B are separated by C if every path between $a \in A$ and $b \in B$ goes through a vertex in C.

The global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, C such that C separates A and B.

Example

Markov properties and conditional independence for undirected graphical models

A different way to define undirected graphical models is via conditional independence statements.

Let $G=(V, E)$.
For $A, B, C \subseteq V$, say that A and B are separated by C if every path between $a \in A$ and $b \in B$ goes through a vertex in C.

The global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, C such that C separates A and B.

Example

Global Markov property:

$$
\begin{aligned}
& X_{2} \Perp X_{3} \mid X_{1} \\
& X_{2} \Perp X_{4} \mid X_{1} \\
& X_{3} \Perp X_{4} \mid X_{1}
\end{aligned}
$$

Conditional independence for discrete distributions

For discrete random variables conditional independence yields polynomial equations in

$$
\left(p_{x}: x \in \mathcal{X}\right) .
$$

How?

Conditional independence for discrete distributions

For discrete random variables conditional independence yields polynomial equations in

$$
\left(p_{x}: x \in \mathcal{X}\right) .
$$

How?

Example

If $V=\{1,2\}$ and $\mathcal{X}=\left[m_{1}\right] \times\left[m_{2}\right]$, then $X_{1} \Perp X_{2}$ is the same as

$$
p_{i j}=p_{i+} p_{+j} \quad \text { for all } i \in\left[m_{1}\right], j \in\left[m_{2}\right] .
$$

Equivalently, the matrix

$$
P=\left(p_{i j}\right)=\left(\begin{array}{c}
p_{1+} \\
\vdots \\
p_{m_{1}+}
\end{array}\right)\left(\begin{array}{lll}
p_{+1} & \cdots & p_{+m_{2}}
\end{array}\right),
$$

has rank 1. So, equivalently its 2×2 minors vanish, i.e. $p_{i j} p_{k \ell}-p_{i \ell} p_{k j}=0$ for all $i, k \in\left[m_{1}\right], j, \ell \in\left[m_{2}\right]$.

Conditional independence for discrete distributions

Proposition

Let X be a discrete random vector with sample space $\mathcal{X}=\prod_{i=1}^{n}\left[m_{i}\right]$. Then for disjoint sets $A, B, C \subset[n]$, we have that $X_{A} \Perp X_{B} \mid X_{C}$ if and only if
$p_{i_{A} i_{B} i_{C}+} p_{j_{A} j_{B} i_{C}+}-p_{i_{A} j_{B} i_{C}+} p_{j_{A} i_{B} i_{C}+}=0 \quad$ for all $\quad i_{A} \neq j_{A} \in \mathcal{X}_{A}, i_{B} \neq j_{B} \in \mathcal{X}_{B}, i_{C} \in \mathcal{X}_{C}$.

Conditional independence for discrete distributions

Recall: the global Markov property w.r.t. G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint A, B, C s.t. C separates A and B.

The global Markov properteis define an ideal $I_{\text {global }(G)} \subseteq \mathbb{R}\left[p_{x}: x \in \mathcal{X}\right]$.

Conditional independence for discrete distributions

Recall: the global Markov property w.r.t. G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint A, B, C s.t. C separates A and B.

The global Markov properteis define an ideal $I_{\operatorname{global}(G)} \subseteq \mathbb{R}\left[p_{x}: x \in \mathcal{X}\right]$.
Example

Let $X_{1}, X_{2}, X_{3}, X_{4} \in\{1,2\}$. Global Markov property:

$$
\begin{aligned}
& X_{2} \Perp X_{3}, X_{4} \mid X_{1} \\
& X_{3} \Perp X_{2}, X_{4} \mid X_{1} \\
& X_{4} \Perp X_{2}, X_{3} \mid X_{1}
\end{aligned}
$$

Ideal associated to the global Markov property is
$I_{\text {global }(G)}=\left\langle 2\right.$-minors of $\left.M_{1}\right\rangle+\left\langle 2\right.$-minors of $\left.M_{2}\right\rangle+\left\langle 2\right.$-minors of $\left.M_{3}\right\rangle+\left\langle 2\right.$-minors of $\left.M_{4}\right\rangle=I_{G}$
where

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{llll}
p_{0000} & p_{0001} & p_{0010} & p_{0011} \\
p_{0100} & p_{0101} & p_{0110} & p_{0111}
\end{array}\right), M_{2}=\left(\begin{array}{llll}
p_{1000} & p_{1001} & p_{1010} & p_{1011} \\
p_{1100} & p_{1101} & p_{1110} & p_{1111}
\end{array}\right) \\
& M_{3}=\left(\begin{array}{llll}
p_{0000} & p_{0001} & p_{0100} & p_{0101} \\
p_{0010} & p_{0011} & p_{0110} & p_{0111}
\end{array}\right), M_{4}=\left(\begin{array}{llll}
p_{1000} & p_{1001} & p_{1100} & p_{1101} \\
p_{1010} & p_{1011} & p_{1110} & p_{1111}
\end{array}\right) .
\end{aligned}
$$

Conditional independence for Gaussian distributions

For Gaussian random variables $X=\left(X_{v}: v \in V\right) \sim \mathcal{N}(\mu, \Sigma)$, conditional independence statements yield polynomial equations in the entries of Σ !

Conditional independence for Gaussian distributions

For Gaussian random variables $X=\left(X_{v}: v \in V\right) \sim \mathcal{N}(\mu, \Sigma)$, conditional independence statements yield polynomial equations in the entries of Σ !

- Independence in a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to entries of Σ vanishing:

$$
X_{a} \Perp X_{b} \Longleftrightarrow \Sigma_{a, b}=0
$$

- Conditional independence in a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to a rank condition:

$$
X_{A} \Perp X_{B}\left|X_{C} \Longleftrightarrow \operatorname{rank}\left(\Sigma_{A \cup C, B \cup C}\right) \leq|C|\right.
$$

Proof.

Exercise.

Markov properties for undirected Gaussian graphical models

Proposition

The set of of Gaussian covariance matrices compatible with the global Markov properties for G is precisely
$\mathcal{M}_{G}=\left\{\Sigma \succ 0: \operatorname{rank}\left(\Sigma_{A \cup C, B \cup C}\right) \leq|C|\right.$ for all $A, B, C \subseteq V$ s.t. C separates A and $\left.B\right\}$.

The ideal $I_{\text {global }(G)} \subseteq \mathbb{R}[\Sigma]$ corresponding to the global Markov property for G is $I_{\text {global }(G)}=\left\langle(|C|+1)\right.$-minors of $\Sigma_{A \cup C, B \cup C}: A, B, C \subseteq V$ s.t. C separates A and $\left.B\right\rangle$.

Markov properties for undirected Gaussian graphical models

Proposition

The set of of Gaussian covariance matrices compatible with the global Markov properties for G is precisely
$\mathcal{M}_{G}=\left\{\Sigma \succ 0: \operatorname{rank}\left(\Sigma_{A \cup C, B \cup C}\right) \leq|C|\right.$ for all $A, B, C \subseteq V$ s.t. C separates A and $\left.B\right\}$.

The ideal $I_{\text {global }(G)} \subseteq \mathbb{R}[\Sigma]$ corresponding to the global Markov property for G is

$$
I_{\text {global }(G)}=\left\langle(|C|+1) \text {-minors of } \Sigma_{A \cup C, B \cup C}: A, B, C \subseteq V \text { s.t. } C \text { separates } A \text { and } B\right\rangle
$$

Example

Global Markov property:
The global Markov property yields the ideal

$$
\begin{aligned}
& X_{2} \Perp X_{3}, X_{4} \mid X_{1} \\
& X_{2} \Perp X_{3}, X_{4} \mid X_{1} \\
& X_{3} \Perp X_{2}, X_{4} \mid X_{1}
\end{aligned}
$$

Equivalence of parametric and implicit descriptions

Theorem (Hammersley-Clifford)

A continuous positive distribution P on X factorizes according to G if and only if it satisfies the global Markov property for the graph G.

- For discrete distributions:

$$
\mathcal{V}\left(I_{G}\right) \cap \Delta_{(|\mathcal{X}|-1),+}=\mathcal{V}\left(I_{\text {global }(G)}\right) \cap \Delta_{(|\mathcal{X}|-1),+} .
$$

- For Gaussian distributions

$$
\mathcal{V}\left(I_{G}\right) \cap\{\Sigma \succ 0\}=\mathcal{V}\left(I_{\text {global }(G)}\right) \cap\{\Sigma \succ 0\} .
$$

Directed acyclic graphical models

Let $G=(V, E)$ be a directed acyclic graph (or $D A G)$. For each node $v \in V$, let $\mathrm{pa}(v)$ be the parents of v. Let $X \in \prod_{v \in V} \mathcal{X}_{v}$ be our random variable.
The distribution $p(x)$ factors according to the graph G if

$$
p(x)=\prod_{v \in V} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

for all $x \in \mathcal{X}$.

Example

The distribution $p(x)$ factors according to this graph if

$$
p(x)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{5} \mid x_{4}\right)
$$

for all $x \in \mathcal{X}$.

The directed acyclic graphical model (or Bayesian network) corresponding to a DAG G and a state space \mathcal{X} is the set of all densities that factorize in according to G.

Discrete directed graphical models

The factorization gives a parametric description of discrete graphical models.

Discrete directed graphical models

The factorization gives a parametric description of discrete graphical models.
Example
Assume that variables are binary: $X_{1}, X_{2}, X_{3} \in\{1,2\}$. We have

$$
p_{x_{1}, x_{2}, x_{3}}=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)=\theta_{x_{1}}^{(1)} \theta_{x_{2}}^{(2)} \theta_{x_{3} \mid x_{1}, x_{2}}^{(3)} .
$$

Note that

$$
1=\theta_{1}^{(1)}+\theta_{2}^{(1)}=\theta_{1}^{(2)}+\theta_{2}^{(2)}=\theta_{1 \mid x_{1}, x_{2}}^{(3)}+\theta_{2 \mid x_{1}, x_{2}}^{(3)}
$$

for all values $x_{1}, x_{2} \in\{1,2\}$. Using Macaulay2, we can compute the vanishing ideal I_{G} for this model:
$\mathrm{S}=\mathrm{QQ}[\mathrm{a}, \mathrm{b}, \mathrm{c} 11, \mathrm{c} 12, \mathrm{c} 21, \mathrm{c} 22]$;
$\mathrm{R}=\mathrm{QQ}[\mathrm{p} 111, \mathrm{p} 112, \mathrm{p} 121, \mathrm{p} 122, \mathrm{p} 211, \mathrm{p} 212, \mathrm{p} 221, \mathrm{p} 222]$;
$\mathrm{f}=\operatorname{map}(\mathrm{S}, \mathrm{R},\{\mathrm{a} * \mathrm{~b} * \mathrm{c} 11, \mathrm{a} * \mathrm{~b} *(1-\mathrm{c} 11), \mathrm{a} *(1-\mathrm{b}) * \mathrm{c} 12, \mathrm{a} *(1-\mathrm{b}) *(1-\mathrm{c} 12)$,
$(1-\mathrm{a}) * \mathrm{~b} * \mathrm{c} 21,(1-\mathrm{a}) * \mathrm{~b} *(1-\mathrm{c} 21),(1-\mathrm{a}) *(1-\mathrm{b}) * \mathrm{c} 22,(1-\mathrm{a}) *(1-\mathrm{b}) *(1-\mathrm{c} 22)\})$;
I = kernel f
The output is:

$$
I_{G}=\left\langle p_{11+} p_{22+}-p_{12+} p_{21+}\right\rangle=I_{1 \Perp 2} .
$$

Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model! How?

Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model! How?

Theorem
Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a Gaussian random vector. The density of X factors according to the DAG G if and only if we can write

$$
X_{i}=\sum_{j \in p a(i)} \lambda_{j i} X_{j}+\epsilon_{i},
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \sim \mathcal{N}\left(\nu, \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right)\right)$, i.e. the ϵ_{i} are independent of each other.

Proof.
Exercise.

Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model! How?

Theorem

Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a Gaussian random vector. The density of X factors according to the DAG G if and only if we can write

$$
X_{i}=\sum_{j \in p a(i)} \lambda_{j i} X_{j}+\epsilon_{i},
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \sim \mathcal{N}\left(\nu, \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right)\right)$, i.e. the ϵ_{i} are independent of each other.

Proof.
Exercise.

Equivalently,

$$
X=\Lambda^{T} X+\epsilon, \text { where } \Lambda_{i j}= \begin{cases}\lambda_{i j} & \text { if } i \rightarrow j \in E \\ 0 & \text { otherwise }\end{cases}
$$

Gaussian directed graphical models

Note that

$$
X=\Lambda^{T} X+\epsilon \quad \Longleftrightarrow \quad X=(I-\Lambda)^{-T} \epsilon
$$

Therefore, the covariance matrix of X is

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1} .
$$

Gaussian directed graphical models

Note that

$$
X=\Lambda^{T} X+\epsilon \quad \Longleftrightarrow \quad X=(I-\Lambda)^{-T} \epsilon
$$

Therefore, the covariance matrix of X is

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1} .
$$

Corollary

The Gaussian graphical model associated to the DAG $G=(V, E)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}: \Lambda \in \mathbb{R}^{E} \text { and } \Omega \succ 0 \text { is diagonal }\right\} .
$$

Gaussian directed graphical models

Note that

$$
X=\Lambda^{T} X+\epsilon \quad \Longleftrightarrow \quad X=(I-\Lambda)^{-T} \epsilon
$$

Therefore, the covariance matrix of X is

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

Corollary

The Gaussian graphical model associated to the DAG $G=(V, E)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}: \Lambda \in \mathbb{R}^{E} \text { and } \Omega \succ 0 \text { is diagonal }\right\} .
$$

Definition

The Gaussian vanishing ideal for a given DAG G is the ideal $I_{G} \subseteq \mathbb{R}[\Sigma]$ of the image of this parametrization.

Gaussian directed graphical models

Example

$$
\begin{aligned}
\Lambda & =\left(\begin{array}{cccc}
0 & \lambda_{12} & \lambda_{13} & 0 \\
0 & 0 & 0 & \lambda_{24} \\
0 & 0 & 0 & \lambda_{34}
\end{array}\right), \quad(I-\Lambda)^{-1}=\left(\begin{array}{cccc}
1 & \lambda_{12} & \lambda_{13} & \lambda_{12} \lambda_{24}+\lambda_{13} \lambda_{34} \\
0 & 1 & 0 & \lambda_{24} \\
0 & 0 & 1 & \lambda_{34} \\
0 & 0 & 0 & 1
\end{array}\right) \\
\Sigma & =(I-\Lambda)^{-T}\left(\begin{array}{llll}
\omega_{1} & & & \\
& \omega_{2} & & \\
& & \omega_{3} & \\
& & & \omega_{4}
\end{array}\right)(I-\Lambda)^{-1} \\
& =\left(\begin{array}{cccc}
\omega_{1} & \omega_{1} \lambda_{12} & \omega_{1} \lambda_{13} & \omega_{1} \lambda_{12} \lambda_{24}+\omega_{1} \lambda_{13} \lambda_{34} \\
\omega_{1} \lambda_{12} & \omega_{2}+\omega_{1} \lambda_{12} & \omega_{1} \lambda_{12} \lambda_{13} & \omega_{2} \lambda_{24}+\omega_{1} \lambda_{12}^{2} \lambda_{24}+\omega_{1} \lambda_{12} \lambda_{13} \lambda_{34} \\
\cdots &
\end{array}\right)
\end{aligned}
$$

The ideal of the parametrization is $I_{G}=\langle | \Sigma_{12,13}\left|,\left|\Sigma_{123,234}\right|\right\rangle=I_{2 \Perp 3|1,1 \Perp 4| 2,3}$.

Markov properties for directed acyclic graphical models

Let $G=(V, E)$ be a DAG.
The directed global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, C such that C d-separates A and B.

d-separation

An undirected path in a DAG G is a sequence of nodes u_{0}, \ldots, u_{k} such that either $u_{i} \leftarrow u_{i+1}$ or $u_{i} \rightarrow u_{i+1}$ for all $i \geq 0$.
The vertex u_{i} is a collider in an undirected path if $u_{i-1} \rightarrow u_{i} \leftarrow u_{i+1}$.
Definition
Two nodes $u, v \in V$ in a DAG G are d-separated given $C \subseteq V \backslash\{u, v\}$ if for every undirected path π between u and v

- either \exists a non-collider in C
- or \exists a collider not in $C \cup$ an (C).

Example

d-separation:

$$
\begin{aligned}
& 1 \perp_{d} 2 \\
& 1 \perp_{d} 4 \mid 2,3 \\
& 1 \perp_{d} 5 \mid 4 \\
& 1 \not \chi_{d} 2 \mid 5
\end{aligned}
$$

Global Markov properties:

$$
\begin{aligned}
& X_{1} \Perp X_{2} \\
& X_{1} \Perp X_{4} \mid X_{2}, X_{3} \\
& X_{1} \Perp X_{5} \mid X_{4}
\end{aligned}
$$

Markov properties for DAG models

Example

d-separation:

$$
\begin{aligned}
& 2 \perp_{d} 3 \mid 1 \\
& 1 \perp_{d} 4 \mid 2,3
\end{aligned}
$$

Global Markov properties:

$$
\begin{aligned}
& X_{2} \Perp X_{3} \mid X_{1} \\
& X_{1} \Perp X_{4} \mid X_{2}, X_{3}
\end{aligned}
$$

- Discrete: let $X_{1}, X_{2}, X_{3}, X_{4} \in\{1,2\}$. Then

$$
\begin{aligned}
I_{\text {global }(G)}= & \left\langle p_{111+} p_{122+}-p_{112+} p_{121+}, p_{211+} p_{222+}-p_{212+} p_{221+},\right. \\
& p_{1111} p_{2112}-p_{1112} p_{2111}, p_{1121} p_{2122}-p_{1122} p_{2121} \\
& \left.p_{1211} p_{2212}-p_{1212} p_{2211}, p_{1221} p_{2222}-p_{1222} p_{2221}\right\rangle .
\end{aligned}
$$

- Gaussian:

$$
I_{\text {global }(G)}=\left\langle\operatorname{det} \Sigma_{12,13}, \operatorname{det} \Sigma_{123,234}\right\rangle=I_{G}
$$

Hammersley-Clifford Theorem for directed acyclic graphical models

Theorem
A probability density factorizes according to a DAG G if and only if it satisfies the global Markov property with respect to G.

Hammersley-Clifford Theorem for directed acyclic graphical models

Theorem
A probability density factorizes according to a DAG G if and only if it satisfies the global Markov property with respect to G.

For Gaussian directed acyclic graphical models:

$$
\mathcal{M}_{G}=\{\Sigma \succ 0\} \cap \mathcal{V}\left(I_{G}\right)=\{\Sigma \succ 0\} \cap \mathcal{V}\left(I_{\text {global }(G)}\right) .
$$

Note that

$$
I_{\text {global }(G)} \subseteq I_{G}
$$

but equality doesn't always hold.

Gaussian directed graphical models in Macaulay2

Example

There is a Macaulay2 package called "GraphicalModels" specifically designed for working with parametrizations and conditional independence ideals in graphical models.

```
loadPackage "GraphicalModels"
G = digraph}{{1,{3}},{2,{3}},{3,{4}},{5,{3,4}}
R = gaussianRing G
I = conditionalIndependenceIdeal(R,globalMarkov(G))
J = gaussianVanishingIdeal(R)
I == J
```

Output: false
Reason: $\left|\Sigma_{12,34}\right| \in I_{G}$ but $\left|\Sigma_{12,34}\right| \notin I_{\text {global }(G)}$.

Gaussian directed graphical models in Macaulay2

Example

There is a Macaulay2 package called "GraphicalModels" specifically designed for working with parametrizations and conditional independence ideals in graphical models.

```
loadPackage "GraphicalModels"
G= digraph{{1,{3}},{2,{3}},{3,{4}},{5,{3,4}}}
R = gaussianRing G
I = conditionalIndependenceIdeal(R,globalMarkov(G))
J = gaussianVanishingIdeal(R)
I == J
```

Output: false
Reason: $\left|\Sigma_{12,34}\right| \in I_{G}$ but $\left|\Sigma_{12,34}\right| \notin I_{\text {global(} G)}$.
Theorem
For a Gaussian DAG model the following relationship holds between I_{G} and $I_{\text {global(}}(G)$:

$$
I_{G}=I_{\text {global }(G)}:\left(\prod_{A \subseteq V} \operatorname{det}\left(\Sigma_{A, A}\right)\right)^{\infty}
$$

Markov equivalence for directed acyclic graphical models

Undirected graphical models:

- unique set of global Markov statements,
- unique family of probability distributions.

Not true for directed graphical models!

Markov equivalence for directed acyclic graphical models

Undirected graphical models:

- unique set of global Markov statements,
- unique family of probability distributions.

Not true for directed graphical models!

Example

[^0]All three of these DAGS have the global Markov property consisting of one statement:

$$
X_{1} \Perp X_{3} \mid X_{2}
$$

Markov equivalence for directed acyclic graphical models

Undirected graphical models:

- unique set of global Markov statements,
- unique family of probability distributions.

Not true for directed graphical models!

Example

All three of these DAGS have the global Markov property consisting of one statement:

$$
X_{1} \Perp X_{3} \mid X_{2}
$$

Definition

Two DAGs are Markov equivalent if they yield the same set of global Markov statements, i.e. they have the same d-separation.

Theorem

Two DAGS G_{1} and G_{2} are Markov equivalent if and only if

1. G_{1} and G_{2} have the same underlying undirected graph,
2. G_{1} and G_{2} have the same unshielded colliders, i.e. triples of vertices u, v, w which induce the subgraph $u \rightarrow v \leftarrow w$.

Linear Structural Equation Models

Linear Structural Equation Models

Definition

A mixed graph is a triple $G=(V, D, B)$ where

- D is the set of directed edges $i \rightarrow j$, and
- B is the set of bidirected edges $i \leftrightarrow j$.

Gaussian random vectors $X=\left(X_{v}: v \in V\right), \epsilon=\left(\epsilon_{v}: v \in V\right)$ such that

$$
X=\Lambda^{\top} X+\epsilon
$$

where $\Lambda \in \mathbb{R}^{D}$, and $\operatorname{Var}(\epsilon)=\Omega$, where $\Omega_{u v}=0$ for $(u, v) \notin B$.

Linear Structural Equation Models

Definition

A mixed graph is a triple $G=(V, D, B)$ where

- D is the set of directed edges $i \rightarrow j$, and
- B is the set of bidirected edges $i \leftrightarrow j$.

Gaussian random vectors $X=\left(X_{v}: v \in V\right), \epsilon=\left(\epsilon_{v}: v \in V\right)$ such that

$$
X=\Lambda^{\top} X+\epsilon
$$

where $\Lambda \in \mathbb{R}^{D}$, and $\operatorname{Var}(\epsilon)=\Omega$, where $\Omega_{u v}=0$ for $(u, v) \notin B$.
Example

$$
\Lambda=\left(\begin{array}{cccc}
0 & 0 & \lambda_{13} & 0 \\
0 & 0 & \lambda_{23} & 0 \\
0 & 0 & 0 & \lambda_{34} \\
0 & 0 & 0 & 0
\end{array}\right), \quad \Omega=\left(\begin{array}{cccc}
\omega_{11} & & & \\
& \omega_{22} & & \\
& & \omega_{33} & \omega_{34} \\
& & \omega_{34} & \omega_{44}
\end{array}\right)
$$

Linear Structural Equation Models

$$
X=\Lambda^{T} X+\epsilon \quad \Longleftrightarrow \quad X=(I-\Lambda)^{-T} \epsilon .
$$

Thus, if $\Sigma=\operatorname{Var}(X)$, then

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

Definition

The linear structural equation model associated to a mixed graph $G=(V, D, B)$ is

$$
\mathcal{M}_{G}=\left\{(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}: \Lambda \in \mathbb{R}^{D}, \Omega \in P D(B)\right\}
$$

The parametrization map of this model is

$$
\phi_{G}: \mathbb{R}^{D} \times P D(B) \rightarrow P D_{V}, \quad(\Lambda, \Omega) \mapsto(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

What is the ideal of the image of ϕ_{G} ? A complete characterization of generators isn't known, Markov properties aren't enough.

Linear Structural Equation Models

$$
I_{G}=\langle | \Sigma_{12,45}| \rangle .
$$

Not a conditional independence ideal! Corresponds to trek separation.

Linear Structural Equation Models

Example

$$
I_{G}=\langle | \Sigma_{12,45}| \rangle .
$$

Not a conditional independence ideal! Corresponds to trek separation.

Example (Verma Graph)

$$
\begin{gathered}
I_{G}=\left\langle\sigma_{11} \sigma_{13} \sigma_{22} \sigma_{34}-\sigma_{11} \sigma_{13} \sigma_{23} \sigma_{24}\right. \\
-\sigma_{11} \sigma_{14} \sigma_{22} \sigma_{33}+\sigma_{11} \sigma_{14} \sigma_{23}^{2}-\sigma_{12}^{2} \sigma_{13} \sigma_{34} \\
\left.+\sigma_{12}^{2} \sigma_{14} \sigma_{33}+\sigma_{12} \sigma_{13}^{2} \sigma_{24}-\sigma_{12} \sigma_{13} \sigma_{14} \sigma_{23}\right\rangle
\end{gathered}
$$

Not determinantal. It turns out that

$$
I_{G}=\left\langle\begin{array}{|cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4} \mid
\end{array}\right\rangle .
$$

Linear Structural Equation Models

Open problems:

- Parameter identifiability: is ϕ_{G} (generically) injective?
- What is the dimension of the model \mathcal{M}_{G} ?
- Covariance equivalence: what are the equivalence classes of mixed graphs?
- What are the generators of I_{G} ?
- Maximum likelihood estimation: when does the MLE exist, what is the ML-degree?
[1] S. Sullivant. Algebraic Statistics (2018)
[2] M. Drton. Algebraic Problems in Linear Structural Equation Modeling (2016)

Linear Structural Equation Models

Open problems:

- Parameter identifiability: is ϕ_{G} (generically) injective?
- What is the dimension of the model \mathcal{M}_{G} ?
- Covariance equivalence: what are the equivalence classes of mixed graphs?
- What are the generators of I_{G} ?
- Maximum likelihood estimation: when does the MLE exist, what is the ML-degree?
[1] S. Sullivant. Algebraic Statistics (2018)
[2] M. Drton. Algebraic Problems in Linear Structural Equation Modeling (2016)

Thank you!

[^0]: $G_{3}:(1) 2-3$

