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Overview

• Undirected graphical models

• Definition and parametric description
• Markov properties and implicit description
• Discrete and Gaussian

• Directed graphical models

• Definition and parametric description
• Markov properties, d-separation, and implicit description
• Discrete and Gaussian
• model equivalence

• Mixed graphical models
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Undirected graphical models
Let G = (V ,E) be an undirected graph and C(G) the set of maximal cliques of G .

Let (Xv : v ∈ V ) ∈ X :=
∏

v∈V Xv be a random vector.

Notation: XA =
∏

v∈A Xv , XA = (Xv : v ∈ A), xA = (xv : v ∈ A).

For each C ∈ C(G) let
φC : XC → R≥0

be a continuous function called a clique potential.

The undirected graphical model (or markov random field) corresponding to G and X
is the set of all probability density functions on X of the form

p(x) =
1

Z

∏
C∈C(G)

φC (xC )

where

Z =

∫
X

∏
C∈C(G)

φC (xC )dµ(x)

is the normalizing constant.
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Undirected graphical models

Example

1

2
3

4

p(x1, x2, x3, x4) =
1

Z
φ12(x1, x2)φ13(x1, x3)φ14(x1, x4).

Example

1

2 3

45

p(x1, x2, x3, x4, x5) =
1

Z
φ123(x1, x2, x3)φ25(x2, x5)φ34(x3, x4)φ45(x4, x5).
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Discrete undirected graphical models

Suppose that Xv = [rv ], rv ∈ N. Then, X ∈ X =
∏

v∈V [rv ]. We use parameters

θCxC := φC (xC ), C ∈ C(G), xr ∈ [rv ].

Then, we get the rational parametrization

px =
1

Z(θ)

∏
C∈C(G)

θCxC .

The graphical model corresponding to G consists of all discrete distributions
p = (px : x ∈ X ) that factor in this way.

Example

1

2
3

4

Let r1 = r2 = r3 = r4 = 2. The parametrization has the form

px1x2x3x4 =
1

Z(θ)
θ

(12)
x1x2

θ
(13)
x1x3

θ
(14)
x1x4

.

The ideal IG is the ideal of the image of this parametrization.
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Discrete undirected graphical models
Example

1

2
3

4

Let r1 = r2 = r3 = r4 = 2. The parametrization has the form

px1x2x3x4 =
1

Z(θ)
θ

(12)
x1x2

θ
(13)
x1x3

θ
(14)
x1x4

.

The ideal IG is the ideal of the image of this parametrization.

S = QQ[a (1,1)..a (2,2), b (1,1)..b (2,2), c (1,1)..c (2,2)]

R = QQ[p (1,1,1,1)..p (2,2,2,2)]

L = {}
for i from 0 to 15 do (

s = last baseName (vars R) (0,i);

L = append(L, a (s 0,s 1)*b (s 0,s 2)*c (s 0,s 3))

)

phi = map(S, R, L)

I = ker phi

Output:

IG = 〈2-minors of M1〉+ 〈2-minors of M2〉+ 〈2-minors of M3〉+ 〈2-minors of M4〉

where
M1 =

(
p0000 p0001 p0010 p0011
p0100 p0101 p0110 p0111

)
, M2 =

(
p1000 p1001 p1010 p1011
p1100 p1101 p1110 p1111

)
M3 =

(
p0000 p0001 p0100 p0101
p0010 p0011 p0110 p0111

)
, M4 =

(
p1000 p1001 p1100 p1101
p1010 p1011 p1110 p1111

)
.
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Gaussian undirected graphical models

X = (Xv : v ∈ V ) ∼ N (µ,Σ) Gaussian random vector, K = Σ−1. The density of X is

p(x) =
1

Z
exp

(
−

1

2
(x − µ)TK(x − µ)

)

When does it factorize according to G = (V ,E), i.e. p(x) = 1
Z

∏
C∈C(G) φC (xC )?

p(x) =
1

Z

∏
v∈V

exp

(
−

1

2
(xv − µv )2Kvv

)∏
v 6=u

exp

(
−

1

2
(xv − µv )(xu − µu)Kvu

)
.

The density factorizes according to G = (V ,E) if and only if

Kuv = 0 for all (u, v) 6∈ E .

The parametric description of the Gaussian graphical model with respect to
G = (V ,E) is

MG = {Σ = K−1 : K � 0 and Kuv = 0 for all (u, v) 6∈ E}.

The ideal of the model IG is the ideal of the image of this parametrization.
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Markov properties and conditional independence for
undirected graphical models

A different way to define undirected graphical models is via conditional independence
statements.

Let G = (V ,E).
For A,B,C ⊆ V , say that A and B are separated by C if every path between a ∈ A
and b ∈ B goes through a vertex in C .

The global Markov property associated to G consists of all conditional independence
statements XA ⊥⊥ XB |XC for all disjoint sets A,B,C such that C separates A and B.

Example

1

2
3

4

Global Markov property:

X2 ⊥⊥ X3|X1

X2 ⊥⊥ X4|X1

X3 ⊥⊥ X4|X1
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Conditional independence for discrete distributions

For discrete random variables conditional independence yields polynomial equations in

(px : x ∈ X ).

How?

Example
If V = {1, 2} and X = [m1]× [m2], then X1 ⊥⊥ X2 is the same as

pij = pi+p+j for all i ∈ [m1], j ∈ [m2].

Equivalently, the matrix

P = (pij ) =

 p1+

...
pm1+

(p+1 · · · p+m2

)
,

has rank 1. So, equivalently its 2× 2 minors vanish, i.e. pijpk` − pi`pkj = 0 for all
i , k ∈ [m1], j , ` ∈ [m2].
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Conditional independence for discrete distributions

Proposition
Let X be a discrete random vector with sample space X =

∏n
i=1[mi ]. Then for

disjoint sets A,B,C ⊂ [n], we have that XA ⊥⊥ XB |XC if and only if

piA iB iC +pjAjB iC + − piAjB iC +pjA iB iC + = 0 for all iA 6= jA ∈ XA, iB 6= jB ∈ XB , iC ∈ XC .
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Conditional independence for discrete distributions
Recall: the global Markov property w.r.t. G consists of all conditional independence
statements XA ⊥⊥ XB |XC for all disjoint A,B,C s.t. C separates A and B.

The global Markov properteis define an ideal Iglobal(G) ⊆ R[px : x ∈ X ].

Example

1

2
3

4

Let X1,X2,X3,X4 ∈ {1, 2}. Global Markov property:

X2 ⊥⊥ X3,X4|X1

X3 ⊥⊥ X2,X4|X1

X4 ⊥⊥ X2,X3|X1

Ideal associated to the global Markov property is

Iglobal(G) = 〈2-minors of M1〉+〈2-minors of M2〉+〈2-minors of M3〉+〈2-minors of M4〉 = IG

where
M1 =

(
p0000 p0001 p0010 p0011
p0100 p0101 p0110 p0111

)
, M2 =

(
p1000 p1001 p1010 p1011
p1100 p1101 p1110 p1111

)

M3 =

(
p0000 p0001 p0100 p0101
p0010 p0011 p0110 p0111

)
, M4 =

(
p1000 p1001 p1100 p1101
p1010 p1011 p1110 p1111

)
.
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Conditional independence for Gaussian distributions

For Gaussian random variables X = (Xv : v ∈ V ) ∼ N (µ,Σ), conditional
independence statements yield polynomial equations in the entries of Σ!

• Independence in a Gaussian distribution X ∼ N (µ,Σ) is equivalent to entries of
Σ vanishing:

Xa ⊥⊥ Xb ⇐⇒ Σa,b = 0.

• Conditional independence in a Gaussian distribution X ∼ N (µ,Σ) is equivalent
to a rank condition:

XA ⊥⊥ XB |XC ⇐⇒ rank(ΣA∪C ,B∪C ) ≤ |C |.

Proof.
Exercise.
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Markov properties for undirected Gaussian graphical
models

Proposition
The set of of Gaussian covariance matrices compatible with the global Markov
properties for G is precisely

MG = {Σ � 0 : rank(ΣA∪C ,B∪C ) ≤ |C | for all A,B,C ⊆ V s.t. C separates A and B}.

The ideal Iglobal(G) ⊆ R[Σ] corresponding to the global Markov property for G is

Iglobal(G) = 〈(|C |+ 1)-minors of ΣA∪C ,B∪C : A,B,C ⊆ V s.t. C separates A and B〉.

Example

1

2
3

4

Global Markov property:

X2 ⊥⊥ X3,X4|X1

X2 ⊥⊥ X3,X4|X1

X3 ⊥⊥ X2,X4|X1

The global Markov property
yields the ideal

Iglobal(G)

= 〈det Σ12,13, det Σ12,14, det Σ13,14,

det Σ12,34, det Σ13,24, det Σ14,23〉.
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Equivalence of parametric and implicit descriptions

Theorem (Hammersley-Clifford)
A continuous positive distribution P on X factorizes according to G if and only if it
satisfies the global Markov property for the graph G.

• For discrete distributions:

V(IG ) ∩∆(|X|−1),+ = V(Iglobal(G)) ∩∆(|X|−1),+.

• For Gaussian distributions

V(IG ) ∩ {Σ � 0} = V(Iglobal(G)) ∩ {Σ � 0}.

14 / 29



Directed acyclic graphical models

Let G = (V ,E) be a directed acyclic graph (or DAG). For each node v ∈ V , let pa(v)
be the parents of v . Let X ∈

∏
v∈V Xv be our random variable.

The distribution p(x) factors according to the graph G if

p(x) =
∏
v∈V

p(xv |xpa(v)).

for all x ∈ X .

Example

1

2

3

4

5

The distribution p(x) factors according to this graph if

p(x) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2, x3)p(x5|x4)

for all x ∈ X .

The directed acyclic graphical model (or Bayesian network) corresponding to a DAG G
and a state space X is the set of all densities that factorize in according to G .
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Discrete directed graphical models
The factorization gives a parametric description of discrete graphical models.

Example

1 2

3

Assume that variables are binary: X1,X2,X3 ∈ {1, 2}. We have

px1,x2,x3 = p(x1)p(x2)p(x3|x1, x2) = θ
(1)
x1
θ

(2)
x2
θ

(3)
x3|x1,x2

.

Note that

1 = θ
(1)
1 + θ

(1)
2 = θ

(2)
1 + θ

(2)
2 = θ

(3)
1|x1,x2

+ θ
(3)
2|x1,x2

for all values x1, x2 ∈ {1, 2}. Using Macaulay2, we can compute the
vanishing ideal IG for this model:

S = QQ[a,b,c11,c12,c21,c22];

R = QQ[p111,p112,p121,p122,p211,p212,p221,p222];

f = map(S,R, { a*b*c11, a*b*(1-c11), a*(1-b)*c12, a*(1-b)*(1-c12),

(1-a)*b*c21, (1-a)*b*(1-c21), (1-a)*(1-b)*c22, (1-a)*(1-b)*(1-c22)});
I = kernel f

The output is:
IG = 〈p11+p22+ − p12+p21+〉 = I1 ⊥⊥ 2.
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Gaussian directed graphical models

The factorization of a Gaussian DAG model also gives a parametrization of the model!
How?

Theorem
Let X ∼ N (µ,Σ) be a Gaussian random vector. The density of X factors according to
the DAG G if and only if we can write

Xi =
∑

j∈pa(i)

λjiXj + εi ,

where ε = (ε1, . . . , εn) ∼ N (ν,Ω = diag(ω1, . . . , ωn)), i.e. the εi are independent of
each other.

Proof.
Exercise.

Equivalently,

X = ΛTX + ε, where Λij =

{
λij if i → j ∈ E

0 otherwise.
.
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Gaussian directed graphical models

Note that
X = ΛTX + ε ⇐⇒ X = (I − Λ)−T ε.

Therefore, the covariance matrix of X is

Σ = (I − Λ)−T Ω(I − Λ)−1.

Corollary
The Gaussian graphical model associated to the DAG G = (V ,E) is

MG = {Σ = (I − Λ)−T Ω(I − Λ)−1 : Λ ∈ RE and Ω � 0 is diagonal}.

Definition
The Gaussian vanishing ideal for a given DAG G is the ideal IG ⊆ R[Σ] of the image of
this parametrization.
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MG = {Σ = (I − Λ)−T Ω(I − Λ)−1 : Λ ∈ RE and Ω � 0 is diagonal}.

Definition
The Gaussian vanishing ideal for a given DAG G is the ideal IG ⊆ R[Σ] of the image of
this parametrization.
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Gaussian directed graphical models

Example
1 2

3 4

Λ =

0 λ12 λ13 0
0 0 0 λ24

0 0 0 λ34

 , (I − Λ)−1 =


1 λ12 λ13 λ12λ24 + λ13λ34

0 1 0 λ24

0 0 1 λ34

0 0 0 1



Σ = (I − Λ)−T


ω1

ω2

ω3

ω4

 (I − Λ)−1

=


ω1 ω1λ12 ω1λ13 ω1λ12λ24 + ω1λ13λ34

ω1λ12 ω2 + ω1λ
2
12 ω1λ12λ13 ω2λ24 + ω1λ

2
12λ24 + ω1λ12λ13λ34

· · ·
· · ·

 .

The ideal of the parametrization is IG = 〈|Σ12,13|, |Σ123,234|〉 = I2 ⊥⊥ 3|1, 1 ⊥⊥ 4|2,3.
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Markov properties for directed acyclic graphical models

Let G = (V ,E) be a DAG.

The directed global Markov property associated to G consists of all conditional
independence statements XA ⊥⊥ XB |XC for all disjoint sets A,B,C such that C
d-separates A and B.
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d-separation

An undirected path in a DAG G is a sequence of nodes u0, . . . , uk such that either
ui ← ui+1 or ui → ui+1 for all i ≥ 0.

The vertex ui is a collider in an undirected path if ui−1 → ui ← ui+1.

Definition
Two nodes u, v ∈ V in a DAG G are d-separated given C ⊆ V \ {u, v} if for every
undirected path π between u and v

• either ∃ a non-collider in C

• or ∃ a collider not in C ∪ an(C).

Example

1

2

3

4

5

d-separation:

1 ⊥d 2

1 ⊥d 4|2, 3
1 ⊥d 5|4
1 6⊥d 2|5

Global Markov properties:

X1 ⊥⊥ X2

X1 ⊥⊥ X4|X2,X3

X1 ⊥⊥ X5|X4
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Markov properties for DAG models

Example

1 2

3 4

d-separation:

2 ⊥d 3|1
1 ⊥d 4|2, 3

Global Markov properties:

X2 ⊥⊥ X3|X1

X1 ⊥⊥ X4|X2,X3

• Discrete: let X1,X2,X3,X4 ∈ {1, 2}. Then

Iglobal(G) =〈p111+p122+ − p112+p121+, p211+p222+ − p212+p221+,

p1111p2112 − p1112p2111, p1121p2122 − p1122p2121,

p1211p2212 − p1212p2211, p1221p2222 − p1222p2221〉.

• Gaussian:
Iglobal(G) = 〈det Σ12,13, det Σ123,234〉 = IG .
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Hammersley-Clifford Theorem for directed acyclic graphical
models

Theorem
A probability density factorizes according to a DAG G if and only if it satisfies the
global Markov property with respect to G.

For Gaussian directed acyclic graphical models:

MG = {Σ � 0} ∩ V(IG ) = {Σ � 0} ∩ V(Iglobal(G)).

Note that
Iglobal(G) ⊆ IG ,

but equality doesn’t always hold.
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Gaussian directed graphical models in Macaulay2

Example

1

2

5

3 4

There is a Macaulay2 package called ”GraphicalModels”
specifically designed for working with parametrizations and
conditional independence ideals in graphical models.

loadPackage "GraphicalModels"

G = digraph{{1,{3}},{2,{3}},{3,{4}},{5,{3,4}}}
R = gaussianRing G

I = conditionalIndependenceIdeal(R,globalMarkov(G))

J = gaussianVanishingIdeal(R)

I == J

Output: false

Reason: |Σ12,34| ∈ IG but |Σ12,34| 6∈ Iglobal(G).

Theorem
For a Gaussian DAG model the following relationship holds between IG and Iglobal(G):

IG = Iglobal(G) :

∏
A⊆V

det(ΣA,A)

∞ .
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Markov equivalence for directed acyclic graphical models
Undirected graphical models:

• unique set of global Markov statements,

• unique family of probability distributions.

Not true for directed graphical models!

Example

All three of these DAGS have the global Markov
property consisting of one statement:

X1 ⊥⊥ X3|X2.

Definition
Two DAGs are Markov equivalent if they yield the same set of global Markov
statements, i.e. they have the same d-separation.

Theorem
Two DAGS G1 and G2 are Markov equivalent if and only if

1. G1 and G2 have the same underlying undirected graph,

2. G1 and G2 have the same unshielded colliders, i.e. triples of vertices u, v ,w
which induce the subgraph u → v ← w.
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Linear Structural Equation Models

1

2

5

3 4

1

2 3 4

Definition
A mixed graph is a triple G = (V ,D,B) where

• D is the set of directed edges i → j , and

• B is the set of bidirected edges i ↔ j .

Gaussian random vectors X = (Xv : v ∈ V ), ε = (εv : v ∈ V ) such that

X = ΛTX + ε,

where Λ ∈ RD , and Var(ε) = Ω, where Ωuv = 0 for (u, v) 6∈ B.

Example

Λ =


0 0 λ13 0
0 0 λ23 0
0 0 0 λ34

0 0 0 0

 , Ω =


ω11

ω22

ω33 ω34

ω34 ω44

 .
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Linear Structural Equation Models

X = ΛTX + ε ⇐⇒ X = (I − Λ)−T ε.

Thus, if Σ = Var(X ), then

Σ = (I − Λ)−T Ω(I − Λ)−1.

Definition
The linear structural equation model associated to a mixed graph G = (V ,D,B) is

MG = {(I − Λ)−T Ω(I − Λ)−1 : Λ ∈ RD ,Ω ∈ PD(B)}.

The parametrization map of this model is

φG : RD × PD(B)→ PDV , (Λ,Ω) 7→ (I − Λ)−T Ω(I − Λ)−1.

What is the ideal of the image of φG ? A complete characterization of generators
isn’t known, Markov properties aren’t enough.
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Linear Structural Equation Models

Example

1

2 3 4

IG = 〈|Σ12,45|〉.

Not a conditional independence ideal!
Corresponds to trek separation.

Example (Verma Graph)

2 3 41

IG = 〈σ11σ13σ22σ34 − σ11σ13σ23σ24

−σ11σ14σ22σ33 + σ11σ14σ
2
23 − σ2

12σ13σ34

+σ2
12σ14σ33 + σ12σ

2
13σ24 − σ12σ13σ14σ23〉.

Not determinantal. It turns out that

IG =

〈∣∣∣∣|Σ123,123| |Σ123,124|
Σ1,3 Σ1,4

∣∣∣∣〉 .
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Linear Structural Equation Models

Open problems:

• Parameter identifiability: is φG (generically) injective?

• What is the dimension of the model MG ?

• Covariance equivalence: what are the equivalence classes of mixed graphs?

• What are the generators of IG ?

• Maximum likelihood estimation: when does the MLE exist, what is the
ML-degree?
· · ·

[1] S. Sullivant. Algebraic Statistics (2018)
[2] M. Drton. Algebraic Problems in Linear Structural Equation Modeling (2016)

Thank you!
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